Received: March 25, 1981

REACTIONS IN [²H]₃-ACETONITRILE BETWEEN TRIMETHYL PHOSPHITE COPPER(I) OR IRON(II) CATIONS AND PHOSPHORUS PENTAFLUORIDE OR TUNGSTEN HEXAFLUORIDE [1]

JAMES H. CAMERON, ALASTAIR J. McLENNAN, DAVID S. RYCROFT and JOHN M. WINFIELD*

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, (U.K.)

SUMMARY

Fluorination of trimethyl phosphite in reactions between phosphorus pentafluoride or tungsten hexafluoride and the cations $Cu[P(OMe)_3]_4^+$ or $[Fe{P(OMe)_3}_n(NCMe)_{6-n}]^{2+}$, n=5 or 4, in $[^2H]_3$ -acetonitrile is influenced both by the metal and by the solvent. Mixtures of phosphorus(III and V) and tungsten(VI) fluorides are obtained whose origin can be understood in terms of kinetic control by Cu^I or Fe^{II}, labile and inert towards substitution respectively, and the Lewis base properties of CD_3CN . ¹⁹F and ³¹P n.m.r. spectroscopy was used to study the reactions and the n.m.r. parameters of $PF_5 \cdot P(OMe)_3$ are reported.

INTRODUCTION

Trimethyl phosphite reacts exothermically with phosphorus pentafluoride [2] and tungsten hexafluoride [3], the initial reaction being exchange of F- and MeO-ligands. Several reactions occur subsequently; they involve Michaelis-Arbusov rearrangement of $P(OMe)_3$ and its fluorinated analogues, and salts of the MeP(OMe) $_3^+$ cation have been isolated from both reactions. Boron trifluoride reacts with $P(OMe)_3$ in a similar manner, to give $PF(OMe)_2, PF_2(OMe)$ [4], or dimethyl methylphosphonate [5]. The existence of copper(I) and iron(II) cations containing ligated $P(OMe)_3$ [6,7] has enabled the effect of cations with differing electronic configurations, Cu^I, d¹⁰ labile to substitution, Fe^{II}, low spin d⁶ substitutionally inert, on the fluorination reaction to be studied. Fluorophosphite complexes of zerovalent metals, for example Ni⁰ and Fe⁰, are well known [5,8] and a Cu^I-PF₂ complex has been reported recently [9].

The study has been made using ¹⁹F and ³¹P n.m.r. spectroscopy as the main tool. The solvent chosen, $[{}^{2}H]_{3}$ -acetonitrile, contains the necessary ²H field/frequency lock and is a good solvating agent for Cu^I, Fe^{II}, PF₅, and WF₆.

RESULTS

 $Cu[P(OMe)_3]_4 ^+MF_6^-$, M = P or As, react exothermically with PF_5 or WF_6 in CD_3CN below room temperature, the reactions between $[Fe\{P(OMe)_3\}_n (NCMe)_{6-n}][MF_6]_2$, n = 5,4 or 3, and WF_6 are far less vigorous; and that between the Fe^{II} cation, n = 5, and PF_5 is barely detectable at room temperature.

Reaction of Cu[P(OMe)₃]⁺₄ with PF₅

The pathway proposed is summarised in Scheme (1). The first step involves the formation of PF_5 , $P(OMe)_3$, which has been mentioned previously [2], although no n.m.r. data were obtained. A P-P bonded structure is clearly indicated from its n.m.r. parameters, Table 1. $|^1J(PP)|$ Values cover a wide range [10] but that reported here appears to be the largest to date. It is significantly greater than that in PF_5 .PMe₃ [10b], as might be expected on the basis of the usual behavior of $^1J(PX)$ in XPR, compounds.

 $PF_5 \cdot P(OMe)_3$ undergoes a ligand exchange reaction to give PF_4OMe and presumably $PF(OMe)_2$. The latter compound was not observed, possibly due to rapid exchange involving $PF(OMe)_2$ coordinated to Cu^I . Comparison between the spectra of $PF_5 \cdot NCCD_3$ and PF_4OMe , Table 1, indicates that the latter is not coordinated by CD_3CN , but even at 243K it is unstable with respect to decomposition to POF_3 . MeF is not observed, suggesting that loss of Me⁺ and F⁻ is not concerted. The presence of PF_6^- in reactions of the AsF_6^- salt suggests that F⁻ ion reacts with $PF_5 \cdot NCCD_3$. The cation MeP(OMe)_3⁺ was observed on

$$Cu [P (OMe)_{3}]_{4}^{+} + PF_{5} \cdot NCCD_{3}$$

$$\downarrow$$

$$PF_{5} \cdot P (OMe)_{3}$$

$$\downarrow$$

$$PF_{4}OMe + PF_{4}OMe + PF_{5} \cdot NCCD_{3}$$

$$\downarrow$$

$$PF_{4}OMe + PF_{5} \cdot NCCD_{3}$$

$$\downarrow$$

$$PF_{2}(OMe)_{3} + PF_{5} \cdot NCCD_{3}$$

$$\downarrow$$

$$PF_{2}(OMe)_{3} + PF_{5} - PF_{$$

At least one product identified, see Tables 2-5.
----> Products not identified.
(a) (MeO) PMe⁺ observed in one reaction.

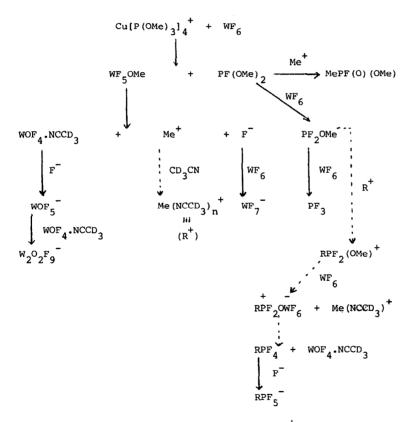
SCHEME (1) Proposed pathways for $Cu[P(OMe)_3]_4^+ + PF_5 in CD_3CN$

one occasion but a more important reaction appears to involve Me⁺ and the solvent. It is suggested that $[CD_3CNMe]^+$ is formed which initiates polymerisation of the solvent. The cation was not identified, but MeCN is known to behave as a trap for carbocations, for example R_3C^+ reacts with MeCN to give R_3CNCMe^+ which is subsequently hydrolysed to $R_3CN(H)C(0)Me$ [11], and [MeCNMe⁺][0_3SCF_3⁻] has been isolated from the reaction of MeOSO₂CF₃ with MeCN [12].

TABLE	1
-------	---

138

Compound	Chemical s (ppm.) ^a	hifts	Coupling constants (Hz)
	19 _F	31 _p	
PF ₅ •P(OMe) ₃	- 48.1 eq	49.6,P ^{III}	¹ J(F _{eq} P) 875, ¹ J(F _{ax} P) 787
	- 79.9 ax	-145.6,P ^V	${}^{1}_{J(PP)}$ 1205, ${}^{2}_{J(F_{eq}P)}$ 285, ${}^{2}_{J(F_{ax}P)}$ 0, ${}^{2}_{J(F_{ax}F_{eq})}$ 57
PF5•NCCD3		-144.8	¹ J(FP) 770
PF_4^{OMe}	- 66.9	- 76.7	¹ J(FP) 872
RPF ₅ (i)	- 61.3 eq	-148.8	${}^{1}_{J}(F_{eq}P) = 812, {}^{1}_{J}(F_{ax}P) = 740, {}^{2}_{J}(F_{eq}F_{ax}) = 47.5$
(ii)	- 62.0 eq	-150.8	¹ _{J(Feq} P) 797, ¹ _{J(Fax} P) 746, ² _{J(Feq} F _{ax}) 48
MePF ₄	- 44.8	- 26.6	¹ J(FP) 968, ² J(HP) 20, ³ J(HF) ~0.5
wf ₅ OMe	113.6 eq 69.3 ax		${}^{2}_{J(F_{eq}F_{ax})}$ 66, ${}^{1}_{J(F_{eq}W)}$ 42
^w 2 ⁰ 2 ^F 9	62.5 eq -144.0 br		${}^{2}_{J}(F_{eq}F_{br})$ 58, ${}^{1}_{J}(F_{eq}W)$ 72
(W2 ⁰ 2 ^F 9 ⁻) '	61.3 eq -144.4 br		² J(F _{eq} F _{br}) 56.5, ¹ J(F _{eq} W) 72


N.m.r. data for selected reaction products

^a With respect to CCl_3F and H_3PO_4 , positive to low field; ax = axial, eq = equatorial, br = bridging.

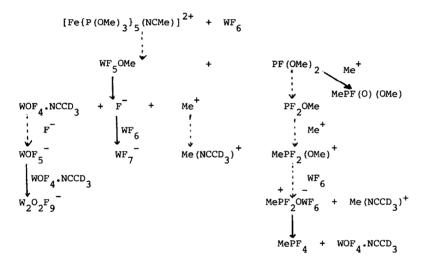
Additional fluorination occurs to produce $PF_2(OMe)$ and a small quantity of PF_3 . Other, minor products are $PF_2(O)(OMe)$, presumably formed from POF_3 and $P(OMe)_3$, and a six coordinate phosphorus-fluorine species formulated as RPF_5 . The latter is a major product from the WF_6 reaction and is discussed below.

Reaction of Cu[P(OMe)3]4 with WF6

The products obtained depend to some extent on the reaction stoicheiometry and the degree to which the very exothermic, initial reaction is controlled. The proposed pathway is summarised in Scheme (2).

SCHEME (2) Proposed pathways for $Cu[P(OMe)_3]_4^+ + WF_6$ in CD_3CN

See note for Scheme (1)


No evidence for $WF_6 \cdot P(OMe)_3$ was obtained, although by analogy with the PF₅ reaction and with $WF_6 \cdot PMe_3$ [13] a W-P bonded adduct would be expected. The ligand exchange products WF_5OMe and $PF(OMe)_2$ are both observed, and further fluorination produces $PF_2(OMe)$ and PF_3 . The ¹⁹F n.m.r. spectrum of PF(OMe)₂ at 253K is relatively broad, suggesting exchange between free and coordinated species, however ^{63,65}Cu spectra are very broad and give no information on this point. The ¹⁹F n.m.r. chemical shifts of WF_5OMe , Table 1, are somewhat different from those reported in C_6F_6 [3], in particular the axial ¹⁹F resonance is shifted to higher applied field by approximately 20 p.p.m. This implied increase in electron density at ¹⁹F_{ax} [14] can be accounted for if a specific interaction exists between WF_5OMe and CD_3CN represented by CD_3CN --- $\tilde{M}eOW(F_4)\tilde{F}^-$.

Decomposition of WF_5OMe is rapid at 263K and occurs in a manner similar to that of PF_4OMe . WOF_4 . $NCCD_3$ and WF_6 behave as F ion acceptors forming WOF_5^7 , $W_2O_2F_9^7$, and WF_7^7 ; the latter undergoes rapid exchange with WF₆ in solution [15]. Formation of $W_2O_2F_0$ is favoured when the mole ratio WF_c : Cu^I salt is relatively small. Although MePF(O)(OMe) is a product, suggesting a Me⁺ cation catalysed rearrangement of PF(OMe), it is believed that the more important trap for Me⁺ is CD₂CN. As the reaction proceeds, its colour changes from pale yellow to dark red and the viscosity of the mixture increases. The major phosphorus-containing species at this point are formulated from their n.m.r. spectra, Table 1, as RPF5 anions, by comparison with the spectra of $MePF_5$ and HPF_5 [16]. Two such species, (i) and (ii) in Table 1, are normally observed although their n.m.r. parameters vary slightly depending on the sample's history. The reaction sequence proposed for their formation, Scheme (2), is speculative, but it accounts for the observations made. It is suggested that the final products are Me[NC(CD₃)]_nNC(CD₃)PF₅ in which n is variable.

Further, indirect evidence for solvent involvement is the observation of two $W_2O_2F_9^-$ species, Table 1, in some reactions. One of these is considered to be a free anion [14], the other, $(W_2O_2F_9^-)'$, is slightly shifted, presumably due to interaction with polymeric Me(NCCD₃)⁺_n. The reaction between WF₆ and free P(OMe)₃ in CD₃CN is very similar to that with Cu[P(OMe)₃]⁺₄ when the initial reaction is not controlled. The phosphorus-containing products identified are four species of the type RPF₅⁻, and PF₆⁻.

Reactions of $[Fe{P(OMe)}_3]_n (NCMe)_{6-n}]^{2+}$, n=5,4 or 3, with WF₆ or PF₅

The reaction between WF₆ and $[Fe{P(OMe)}_{3}]_{5}(NCMe)]^{2+}$ at room temperature is very slow and is not complete after several weeks even when a large excess of WF₆ is used. Similar behaviour is observed when other cations, n=4 or 3, are used. The extent of solvent involvement in these reactions is far less than with $Cu[P(OMe)_{3}]_{4}^{+}$ and the major product is MePF₄, Table 1. This is presumably formed by a route similar to that suggested for RPF₅⁻, except that Me⁺ rather than Me(NCCD₃)_n⁺ is involved, Scheme (3).

SCHEME (3) Proposed pathway for $[Fe{P(OMe)_3}_5(NCMe)]^{2+} + WF_6 \text{ in } CD_3CN.$

See note for Scheme (1)

Significant quantities of MePF(O) (OMe) and $W_2O_2F_9^-$, in addition to MePF₄ and WOF₄.NCCD₃, are observed only when the concentration of WF₆ is relatively low and under these circumstances Me⁺ apparently competes successfully with WF₆ for the intermediate PF(OMe)₂. Fluoride ion, produced from the decomposition of the intermediate WF₅OMe, reacts to form $W_2O_2F_9^-$ and WF₇. Trace quantities of RPF₅⁻ and PF₆, the latter observed with AsF₆⁻ salts, are observed after longer reaction times. The reaction between $[Fe{P(OMe)}_{3}]_{5}(NCMe)]^{2+}$ and PF_{5} under similar conditions is even slower, therefore it was not studied in detail. After several weeks $[Fe{P(OMe)}_{3}]_{4}(NCMe)_{2}]^{2+}$, in addition to unchanged starting material, is observed in its ${}^{37}P{}^{1}H$ n.m.r. spectrum.

DISCUSSION

There is no evidence that these reactions involve the fluorination of coordinated $P(OMe)_3$, but the metal has a direct effect on the reaction, as it exercises kinetic control on the concentration of free $P(OMe)_3$ in solution. The ¹H n.m.r. spectrum of $Cu[P(OMe)_3]_4^+$ indicates that exchange between free and coordinated $P(OMe)_3$ is rapid on the n.m.r. timescale at room temperature, as expected for a d¹⁰ cation. In contrast exchange involving $P(OMe)_3$ in $[Fe{P(OMe)_3}_n (NCMe)_{6-n}]^{2+}$, n=5 or 4, is not observed. As reaction proceeds coordinated $P(OMe)_3$ is replaced by CD_3CN , the latter competing successfully with $PF(OMe)_2$ as a ligand for Cu^I and Fe^{II} . Identical products are obtained whether the counter anion is $PF_6^$ or AsF_6^- , however the latter salts appear to be less stable thermally, and decomposition occurs when temperature control of the reactions is not complete.

The solvent, CD_3CN , is the second important factor in determining the outcome of these reactions. Its solvation of the ionic reactants is crucial; reactions do not occur in CCl_3F solution, but are initiated by the addition of a small quantity of CD_3CN . The intervention of the solvent as a reactant is seen most obviously in the formation of the RPF_5 species, and in the decomposition of PF_5OMe and WF_5OMe , for example the latter compound decomposes to give MeF and WF_4O in the absence of solvent, and gives $MeP(OMe)_3^+WF_5O^-$ in the presence of $P(OMe)_3$ alone [3]. The solvent must play a role also in the formation of MePF_4 from PF_2OMe .

EXPERIMENTAL

All operations were carried out using a vacuum system (<10⁻³ torr) or an Ar atmosphere glove box ($H_2O<10p.p.m.$). N.m.r. spectra were obtained using Varian 100XL, and Jeol C60HL and FX90Q instruments at 60.0(¹H), 94.15 or 56.4(¹⁹F), 40.5(³¹P), 28.4(⁶⁵Cu), and 26.5MHz(⁶³Cu). Chemical shifts are reported positive to low field of CCl₃F or 85% H_3PO_4 . I.r. and Raman spectra were obtained using P.E.557 and Spex Ramalog instruments using conventional sampling techniques. Analyses were by Malissa and Reuter, F.R.G.

 WF_6 , PF_5 , and AsF_5 (Fluorochem Ltd.) were purified by low temperature trap-to-trap distillation and were stored over predried NaF. MeCN was purified as previously reported [7], and CD_3CN by vacuum distillation and storage over 4A molecular sieves. $P(OMe)_3$ (B.D.H. Ltd.) was distilled at atmospheric pressure, then in vacuo, and stored over 4A sieves.

Preparation of trimethylphosphite-metal-fluoroanion salts

 $\left[{\rm Fe}\{{\rm P}\left({\rm OMe}\right)_3 \right]_5 \left({\rm NCMe}\right) \right] \left[{\rm PF}_6 \right]_2 \mbox{ was prepared by the literature method [7], and the <math display="inline">{\rm AsF}_6^-$ salt was prepared in a similar manner. Shorter reaction times gave solids in which the predominant cation was cis- $\left[{\rm Fe}\{{\rm P}\left({\rm OMe}\right)_3 \right]_4 \left({\rm NCMe}\right)_2 \right]^{2+}$. The products also contained small quantities of fac-and mer- $\left[{\rm Fe}\{{\rm P}\left({\rm OMe}\right)_3 \right]_3 \left({\rm NCMe}\right)_3 \right]^{2+}$ and $\left[{\rm Fe}\{{\rm P}\left({\rm OMe}\right)_3 \right]_5 \left({\rm NCMe}\right) \right]^{2+}$. In all cases compounds were identified by their n.m.r. and i.r. spectra.

 $[Cu(NCMe)_{4}][PF_{6}] (0.35mmol), prepared by the literature method [17], reacted with P(OMe)_{3} (17.0mmol) at room temperature to give a yellow solution and a white solid. Removal of volatile material, identified by ¹H n.m.r. spectroscopy as a mixture of MeCN, unchanged P(OMe)_{3}, and a trace of MeP(O)(OMe)_{2}, gave a white solid identified as tetrakis(trimethyl-phosphite)copper(I) hexafluorophosphate. Found C, 21.6; H, 5.0; Cu, 8.8; F, 15.9; P, 21.6. C₁₂H₃₆CuF₆O₁₂P requires C, 20.5; H, 5.2; Cu, 9.0; F, 16.2; P, 22.0%. Its i.r. and Raman spectra contained bands assignable to coordinated P(OMe)_{3} [18] and PF_{6}^{-}. Its n.m.r. spectra in CD₃CN consisted of signals assigned to PF_{6}^{-}, ¹J(FP) 706 Hz, <math>\delta(^{19}F)$ -71.5, $\delta(^{31}P)$ -144.6p.p.m., and to Cu[P(OMe)_{3}]_{4}^{+}, ¹J(P^{63}Cu) 1221, ¹J(P⁶⁵Cu) 1311 Hz, $\delta(^{31}P)$ 125.6p.p.m. The ¹H n.m.r. spectrum was a broad singlet at 290K, but fine structure due to the A₉ part of an [A₉Xl₄ spin system was resolved at 248K. The n.m.r. spectra of the cation were in good agreement with previous work [19], and indicated a tetrahedral structure for the cation. The corresponding AsF_6 salt was prepared in a similar manner, and identified by its spectra.

Reactions between the phosphite-metal salts and PF_5 or WF_6

Reactions were carried out in Pyrex ampoules fitted with P.T.F.E., glass stop-cocks (Rotaflo) and n.m.r. tubes, enabling the products of a reaction to be examined at various times during its course. The Cu^I or Fe^{II} salts (0.2-0.4g) were dissolved in $CD_3CN(2ml)$ <u>in</u> <u>vacuo</u>, then PF₅ or WF₆ (0.2-2.4g) was added by distillation. Stoicheiometries and conditions used for typical reactions are given in Table 2.

Product identification was made by 19 F and 31 P n.m.r. spectroscopy by comparison with literature data [2,3,14,15,20], supplemented by i.r. spectra of volatile products. 1 H spectra were complex and detailed assignments were not made. The products identified from the reactions listed in Table 2 are given in Tables 3-5.

ACKNOWLEDGEMENTS

We thank Dr. W. McFarlane (City of London Polytechnic) and Jeol (London) for recording the 63,65 Cu n.m.r. spectra, and S.R.C., S.E.D., and N.A.T.O. for financial support.

REFERENCES

- Presented at the 7th European Symposium on Fluorine Chemistry, 1980, J. Fluorine Chem., 16 (1980) 596.
- 2 D.H. Brown, K.D. Crosbie, G.W. Fraser, and D.W.A. Sharp, J. Chem. Soc. (A), (1969) 872.
- 3 A.M. Noble and J.M. Winfield, J. Chem. Soc. (A), (1970) 501.
- 4 H. Binder and R. Fischer, Z. Naturforsch., 27b (1972) 753.
- 5 B. Demerseman, G. Bouquet, and M. Bigorgne, J. Organomet. Chem., <u>35</u> (1972) 125.
- 6 K.J. Coskran, T.J. Huttemann, and J.G. Verkade, Adv. Chem. Ser., <u>62</u> (1967) 590.
- 7 C.J. Barbour, J.H. Cameron, and J.M. Winfield, J.C.S. Dalton Trans., (1980) 2001.
- 8 J.-M. Savariault, P. Cassoux, and J.-F. Labarre, Compt. rend. <u>269C</u> (1969) 496; J. Chim. Phys., <u>67</u> (1970) 235, 258; C.A. Udovich, R.J. Clark, and H. Haas, Inorg. Chem., 8 (1969) 1066.
- 9 C.D. Desjardins, D.B. Edwards, and J. Passmore, Can. J. Chem., <u>57</u> (1979) 2714.
- 10a E.G. Finer and R.K. Harris, Prog. N.M.R. Spectroscopy, 6 (1971) 61.
- 10b C.W. Schultz and R.W. Rudolf, J. Am. Chem. Soc., 93 (1971) 1898.
- 11 R.D. Bach, T.H. Taaffee, and S.J. Rajan, J. Org. Chem., 45 (1980) 165
- 12 B.L. Booth, K.O. Jibodu, and M.F. Proença, J.C.S. Chem. Comm., (1980) 1151.
- 13 F.N. Tebbe and E.L. Muetterties, Inorg. Chem., 7 (1968) 172.

TABLE 2

Reaction stoicheiometries and conditions

Reaction	Reactants (mmol) ^(a)	Conditions	Colour of Solution
1	[CuP ₄][PF ₆](0.54)+PF ₅ (5.1)	exothermic reaction ~278K	yellow
2	[CuP ₄] [PF ₆] (0.54)+PF ₅ (1.9)	≼ 268K	yellow
3	[CuP ₄][AsF ₆](0.48)+PF ₅ (1.9)	exothermic reaction ~273K	yellow → red
4	[CuP ₄] [AsF ₆] (0.48)+PF ₅ (1.6)	268K	yellow
5	$[CuP_4][PF_6](0.54)+WF_6(4.0)$	exothermic reaction ~278K	yellow → dark red
		mixture cooled then warmed to 293K	
6	[CuP ₄][PF ₆](0.54)+WF ₆ (1.8)	exothermic reaction ~278K	yellow`→ dark red
		no temperature control	
7	$[CuP_{4}][AsF_{6}](0.48)+WF_{6}(1.5)$	exothermic reaction ~278K	yellow + dark red
		no temperature control	
8	$[CuP_4][PF_6](0.54)+WF_6(8.0)$	273K for 2h then warmed to 298K	dark red
9	$[CuP_4][PF_6](0.54)+WF_6(6.1)$	253K then 273K then 295K	pale brown → yellow
10	$[FeP_5^N] \{PF_6\}_2^{(0.2)+WF_6}^{(3.0)}$	293K	yellow
11	$[FeP_5N][PF_6]_2^{(0.15)+WF_6^{(1.2)}}$	293K	yellow
12	$[FeP_4N_2][AsF_6]_2^{(b)}(0.13)+WF_6(1)$	1.3) 293K	yellow
13	P(OMe) ₃ (2.6)+WF ₆ (5.4)	77-273K over 12h	dark red

(a) $P = P(OMe)_{3'}N = MeCN_{\bullet}$ (b) Some fac-FeP₃N₃²⁺ and FeP₅N²⁺ also present.

TABLE 3											
Products	Products identified from $Cu[P(OMe)_3]_4^+$ + PF_5 reactions	m Cu[P(OMe)	3^{1}_{4} + PF ₅ re	actions							
Reaction	Reaction ^(a) Temperature Products identified (b)	Products i	dentified								
	time	PF5.NCCD3	PF_5 , NCCD ₃ PF_5 , P (OME) 3 PF_4 OME POF ₃ PF_2 (OME) PF_2 (O) (OME) PF_3 PF_6 MEP (OME) 3^+ RPF 5^-	PF40Me	POF 3	PF2 (OMe)	PF ₂ (0) (OMe)	PF_3	PF 6 -	MeP (OMe) ⁺	RPF5
-	278K				~	*	/ (c)	/ (c)			
2	3h 243K	~	*	`	~						
m	273K				`	`			~		
4	268K	(c)		`	~				`	•	
			and a second	1							

(b) Where no time is stated, spectra were recorded immediately $(c)^{\rm Trace}$ quantity. (a) Numbers correspond to those in Table 2.(i) after the initial reaction. h = hour, d = day

			P	>						
Reaction ^(a)	Reaction ^(a) Temperature (b)	Prod	Products identified	fied						.
	time	WF ₅ 0	$WF_{5}OMe WOF_{4} \cdot NCCD_{3} WOF_{5} W_{2}O_{2}F_{9}^{-}$	D ₃ WOF ₅	- W202F9	_ WF7_/	WF 6 PF (OM	e) 2 MePF(0)	WF_7^-/WF_6 PF (OMe) 2 MePF (O) (OMe) PF_2 OMe PF_3 RE	RPF5 MePF4
ſſ	293K 0.5h 24h 20d		(c)		~~~	~		~	/ (c) / (d)	
vo	293K 0.5h 2d 10d			(c)	(d) (d) (d)	~	* * *	`	/ (d) / (d)	
٢	293K 0.5h 4d			~ ~	(d)		~ ~		/ (g)	
œ	273K 2h 293K 2d 7d		(c) (c)		/ (c) /	`		*	/ / (c)/(d)	`
σι	253K 273K 295K	* * *	***		**	~~~	```	`	/ (c)	
(a)-(c)	As Table 3.		(d) Two species observed	s obser	veđ					

TABLE 4

TABLE 5

Products identified from $[Fe{P(OMe)}_{2}]_{n}$ (NCMe) $_{e_{n}}]$ or $P(OMe)_{n}$ with $WF_{e_{n}}$

0	
~	
	ľ
ç	
5	
, N	
•	
	ł
	1
	1

·	PF6-			`	~	
	RPF5	/ (c)	/ (c)	(q)	/ (e)	
	MePF 4	~	`	`		
	WOF_4 .NCCD ₃ $W_2O_2F_9^ WF_7^-/WF_6$ MePF(O) (OME) MEPF_4 RPF_5^- PF_6^-		`			
	wf ₇ [−] /wf ₆	~~	~~	`	/ (c)	
entified	^w 2 ⁰ 2 ^F 9 ⁻		~~	`	~	
Products identified	WOF4.NCCD3	~~	~~	~	(c) /	
Temperature (b)	time	293K 1h 20d	293K 24h 5d	293K 14d	293K 12h	
Reaction ^(a)		10	;	12	13	

(e) Four species observed. (a)-(d) As Tables 3 and 4.

- 14 W. McFarlane, A.M. Noble, and J.M. Winfield, J. Chem. Soc. (A), (1971) 948.
- 15 A. Prescott, D.W.A. Sharp, and J.M. Winfield, J.C.S. Dalton Trans., (1975) 934.
- 16 W. Stadelmann, O. Stelzer, and R. Schmutzler, Z. anorg. allg. Chem., <u>385</u> (1971) 142; J.F. Nixon and J.R. Swain, Inorg. Nucl. Chem. Letters, 5 (1969) 295.
- 17 A.C. Baxter, J.H. Cameron, A. McAuley, F.M. McLaren, and J.M. Winfield, J. Fluorine Chem., 10 (1977) 289.
- 18 R.A. Nyquist, Spectrochim. Acta, 22 (1966) 1315.
- 19 R.W. King, T.J. Huttemann, and J.G. Verkade, J.C.S. Chem. Comm., (1965) 561; W. McFarlane and D.S. Rycroft, J. Magnetic Res., <u>24</u> (1976) 95.
- 20 R.A.Y. Jones and A.R. Katritzky, Angew. Chem., <u>74</u> (1962) 60; E.L. Muetterties, W. Mahler, and R. Schmutzler, Inorg. Chem., <u>2</u> (1963) 613; G.S. Reddy and R. Schmutzler, Z. Naturforsch., <u>25b</u> (1970) 1199.